HFE60

SUBMINIATURE INTERMEDIATE POWER RELAY

c **Al** us

File No.: E134517

File No.: B140653286012

Features

- Low height 10.5mm
- Low coil power
- High switching capacity1A: 8A 250VAC

2A, 1A+1B: 5A 250VAC

• 3kV dielectric strength (between coil and contacts)

CONTACT DATA

Contact arrangement	1A	2A, 1A+1B			
Contact 1)	No gold plated: 50mΩ (at 1A 6VDC)				
resistance	Gold plated:50mΩ (at 0.1A 6VDC)				
Contact material	AgSnO ₂				
Contact rating	8A 250VAC (COSØ=1.0) 5A 30VDC(τ =0ms)	5A 250VAC (COSØ=1.0) 5A 30VDC(τ =0ms)			
Max. switching voltage	380VAC / 240VD0				
Max. switching current	8A	5A			
Max. switching power	2000VA/150W	1250VA/150W			
Mechanical endurance		1 x 10 ⁷ ops			
Electrical endurance		1 x 10⁵ops			

Notes: 1)The data shown above are initial values.

CHARACTERISTICS

Insulation resistance			1000MΩ (at 500VDC			
		coil & contacts	3000VAC 1mir			
Dielectric strength	Between	open contacts	1000VAC 1mir			
	Between	contact sets	2000VAC 1mir			
Surge vol	tage (betwe	en coil and contacts)	5.5kV (1.2/50µs)			
Operate ti	ime (single	e side stable)	≤10ms			
Release t	ime (single	e side stable)	≤5ms			
Set time(l	atching)		≤10ms			
Reset time (latching)			≤10ms			
Shock resistance		Functional	196m/s²			
		Destructive	980m/s²			
Vibration resistance		Functional	10Hz to 55Hz 2.0mm DA			
		Destructive	10Hz to 55Hz 3.5mm DA			
Humidity			5% to 85% RH			
Ambient temperature			-40°C to 85°C			
		ermination	PCE			
Termination loa		erminaltion	PCE			
Unit weight			Approx. 4.5g			
Construction			Plastic sealed Flux proofed			

COIL

	Single side stable: Approx. 300mW
Coil power	1 coil latching: Approx. 150mW
	2 coils latching: Approx. 300mW

COIL DATA

at 23°C

Single side stable (300mW)

Nominal Voltage VDC	Pick-up VDC 1) 2)	Drop-out Voltage 1) VDC 2)	Max. Allowable Voltage VDC	Coil Resistance	
3	≤2.4	≥0.3	3.9	30 x (1±10%)	
5	≪4.0	≥0.5	6.5	83 x (1±10%)	
6	≤4.8	≥0.6	7.8	120 x (1±10%)	
9	≤7.2	≥0.9	11.7	270 x (1±10%)	
12	≤9.6	≥1.2	15.6	480 x (1±10%)	
18	≤14.4	≥1.8	23.4	1080 x (1±10%)	
24	≤19.2	≥2.4	31.2	1920 x (1±10%)	

Notes:1) The data shown above are initial values.

2) Above driving voltage only apply to check relay normal function without load. When normal use with load, use (1~1.5)Ue for latching relay set/reset volage, use (1~1.3)Ue for set voltage and 0V for release voltage for monostable relay.

SAFETY APPROVAL RATINGS

		2A/1A+1B:		
	1A:	5A 250VAC		
	8A 250VAC	5A 30VDC		
UL/CUL	5A 30VDC	B300		
	B300	R150		
	R150	1/6HP 125VAC/250VAC		
	1/6HP 125VAC/250VAC	(For 1HD)		
		1/10HP 125VAC/250VAC		
		(For 2H)		
	1A:	2A/1A+1B:		
ΤÜV	8A 250VAC	5A 250VAC		
	5A 250VAC (COSØ=0.4)	3A 250VAC (COSØ=0.4)		
	5A 30VDC	5A 30VDC		

Notes: 1) All values unspecified are at room temperature.

2) Only typical loads are listed above. Other load specifications can be available upon request.

Notes: The data shown above are initial values.

HONGFA RELAY

ISO9001, ISO/TS16949, ISO14001, OHSAS18001, IECQ QC 080000 CERTIFIED

COIL DATA at 23°C

1 coil latching (150mW)

Max. Nominal Reset Set Voltage Allowable Voltage 1) VDC 2) Coil Resistance Voltage VDC 1) Voltage **VDC** VDČ 2) 3 ≤2.4 ≤2.4 3.9 60 x (1±10%) 5 ≤4.0 ≤4.0 6.5 167 x (1±10%) 6 ≤4.8 ≤4.8 7.8 240 x (1±10%) 9 ≤7.2 ≤7.2 11.7 540 x (1±10%) 12 ≤9.6 ≤9.6 15.6 960 x (1±10%) ≤14.4 ≤14.4 18 23.4 2160 x (1±10%) 24 ≤19.2 ≤19.2 31.2 3840 x (1±10%)

2 coils latching (300mW)

		•		
Nominal Voltage VDC	Set Voltage VDC 1) 2)	Reset Voltage ₁₎ VDC ₂₎	Max. Allowable Voltage VDC	Coil Resistance
3	≤2.4	≤2.4	3.9	30 x (1±10%)
5	≤4.0	≤4.0	6.5	83 x (1±10%)
6	≤4.8	≤4.8	7.8	120 x (1±10%)
9	≤7.2	≤7.2	11.7	270 x (1±10%)
12	≤9.6	≤9.6	15.6	480 x (1±10%)
18	≤14.4	≤14.4	23.4	1080 x (1±10%)
24	≤19.2	≤19.2	31.2	1920 x (1±10%)
	Voltage VDC 3 5 6 9 12 18	Voltage VDC Set Voltage VDC 1) 3 ≤2.4 5 ≤4.0 6 ≤4.8 9 ≤7.2 12 ≤9.6 18 ≤14.4	Voltage VDC Set Voltage VDC Voltage 1) Voltage 1) VDC Voltage 1) VDC VDC 2) 3 \$\leq\$2.4 \$\leq\$2.4 \$\leq\$2.4 \$\leq\$4.0 \$\leq\$4.0 \$\leq\$4.8 \$\leq\$4.8 \$\leq\$4.8 \$\leq\$4.8 \$\leq\$4.8 \$\leq\$4.8 \$\leq\$4.8 \$\leq\$6 \$\leq\$6.2 \$\leq\$7.2 \$\leq\$7.2 \$\leq\$7.2 \$\leq\$1.2 \$\leq\$9.6 \$\leq\$9.6 \$\leq\$9.6 \$\leq\$14.4 \$\leq\$14.4	Voltage VDC Set Voltage VDC 1) VDC 2) Reset Voltage 1 Voltage 1) VDC 2) Allowable Voltage VDC 3 \$\leq 2.4\$ \$\leq 2.4\$ 3.9 5 \$\leq 4.0\$ \$\leq 5.5\$ 6 \$\leq 4.8\$ \$\leq 4.8\$ 7.8 9 \$\leq 7.2\$ \$\leq 7.2\$ 11.7 12 \$\leq 9.6\$ \$\leq 9.6\$ 15.6 18 \$\leq 14.4\$ \$\leq 14.4\$ 23.4

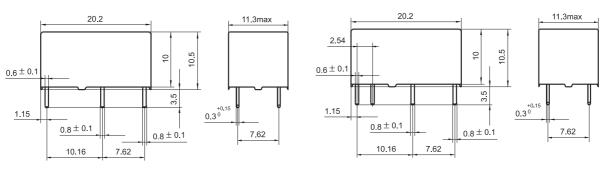
Notes:1) The data shown above are initial values.

ORDERING INFORMATION

H	HFE60/	12	-1HD	S	Т	G	-L2	-R	(XXX)
Туре									
Coil voltage 3	3, 5, 6, 9, 12, 18, 2	24VDC							
Contact form 1H: 1 Form A 2H: 2 Form A 1HD: 1 Form A +1 Form B									
Construction	S: Plastic sealed Nil: Flux proofed								
Contact material T: AgSnO2									
Contact plating G: Gold plated Nil: No gold plated									
Sort	rt L1: 1 coil latching L2: 2 coils latching Nil: Single side stable								
Polarity R: Reverse polarity Nil: Standard polarity									
Special code ¹⁾ XXX: Customer special requirement									

- Notes: 1) We recommend flux proofed types for a clean environment (free from contaminations like H₂S, SO₂, NO₂, dust, etc.).

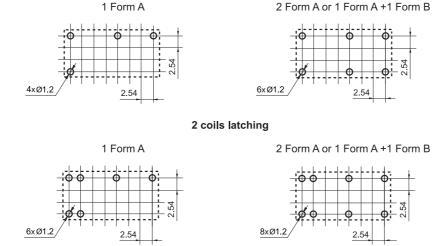
 We suggest to choose plastic sealed types and validate it in real application for an unclean environment (with contaminations like H₂S, SO₂, NO₂, dust, etc.).
 - Contact is recommended for suitable condition and specifications if water cleaning or surface process is involved in assembling relays on PCB.
 - 3) The customer special requirement express as special code after evaluating by Hongfa.


OUTLINE DIMENSIONS, WIRING DIAGRAM AND PC BOARD LAYOUT

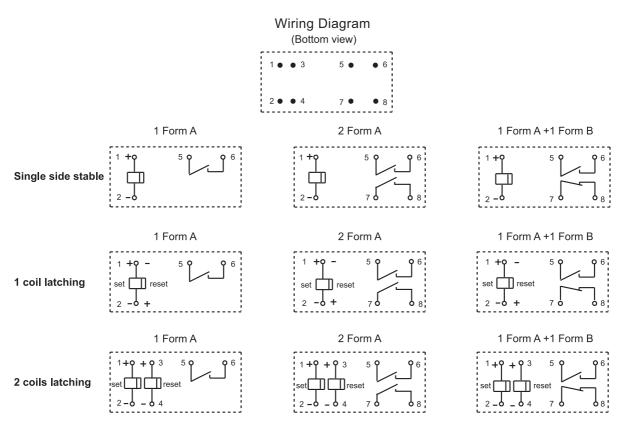
Unit: mm

Outline Dimensions

Single side stable / 1 coil latching

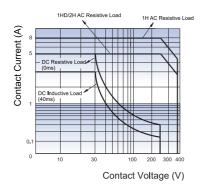

2 coils latching

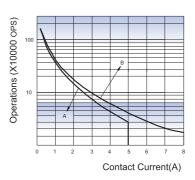
²⁾ Above driving voltage only apply to check relay normal function without load. When normal use with load, use (1~1.5)Ue for latching relay set/reset voltage, use (1~1.3)Ue for set voltage and 0V for release voltage for monostable relay.


PCB Layout (Bottom view)

Single side stable/1 coil latching

Remark: 1) In case of no tolerance shown in outline dimension: outline dimension ≤1mm, tolerance should be ±0.2mm; outline dimension >1mm and ≤5mm, tolerance should be ±0.3mm; outline dimension >5mm, tolerance should be ±0.4mm.

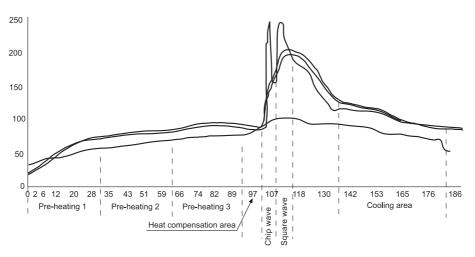

- 2) The tolerance without indicating for PCB layout is always ±0.1mm.
- 3) The width of the gridding is 2.54mm.


Remark: The above is wiring diagram for product with standard polarity, the coil polarity of reverse polarity and standard polarity is opposite.

CHARACTERISTIC CURVES

MAXIMUM SWITCHING POWER

ENDURANCE CURVE


Test conditions:

- 1) Curve A: 1A+1B type (or 2A type)
- Curve B: 1A type 2) Test conditions:
- Resistive load, 120VAC~250VAC, 40°C.

Notice:

- 1. Latching relay is on the "reset" or "set" status when being released from stock, with the consideration of shock risen from transit and relay mounting, relay would be changed to "set" or "reset" status, therefore, when application (connecting the power supply), please reset the relay to "set" or "reset" status on request.
- 2. In order to maintain "set" or "reset" status, energized voltage to coil should reach the rated voltage, impulse width should be 5 times more than "set" or "reset" time. Do not energize voltage to "set" coil and "reset" coil simultaneously. And also long energized time (more than 1 min) should be avoided.
- 3. When choose the relay with PCB termination, the recommended welding temperature range and duration is 240°C to 260°C, 2s to 5s; Please do not use the reflow welding method, if the reflow is really required, please contact our technicals; the normal recommeded wave soldering temperature is 250°C within 2s; the below chart is the wave soldering temperature distribution chart we recommended for your reference.
- 4. Keep the product away from strong magnetic field during transportation, storage and application, to avoid change of set/reset voltage.
- 5. This is a polarized relay. Please pay attention to the coil polarity according to the datasheet when using it.

Wave soldering temperature distribution chart

Disclaimer

The specification is for reference only. Specifications subject to change without notice.

We could not evaluate all the performance and all the parameters for every possible application. Thus the user should be in a right position to choose the suitable product for their own application. If there is any query, please contact Hongfa for the technical service. However, it is the user's responsibility to determine which product should be used only.

© Xiamen Hongfa Electroacoustic Co., Ltd. All rights of Hongfa are reserved.